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Abstract. The standard percolation model (SPM) is generalised in order to take the diffusion 
of particles with short-range attractive interaction into account. The movement of particles 
depends on the temperature and the interaction energy through an external parameter T 
( 0 ~ 7 ~  1). Monte Carlo simulations in two dimensions show that the cluster size 
distribution for small clusters, the number of clusters per site and the percolation threshold 
substantially change due to the diffusion, depending continuously on T. The fractal 
dimension, the correlation length and the percolation probability exponents are calculated. 
Our study suggests that the proposed model and the SPM belong to the same universality 
class. 

1. Introduction 

The standard percolation model (SPM) has been extensively studied in the past due to 
both the experimental importance of the subject and the interest in the field of phase 
transitions and critical phenomena, see, for example, the reviews of Stauffer (1979), 
Essam (1980) and Clerc er a1 (1983). Recently, renewed interest in the SPM has arisen 
from the study of the fractal properties of clusters at the critical probability. Variants 
of the SPM consider the case in which the particles, instead of being randomly 
distributed, are correlated due to interactions between them (Stauffer er a1 1982 and 
references therein). The most studied case is the lattice gas (Ising model) where the 
particles interact via pairwise-additive nearest-neighbour attractive forces (Binder 1979, 
Stauffer er a1 1982, Binder 1985). The actual dependence of the interaction energy on 
the number of neighbours is usually not known and it is expected to be different in 
specific cases. In fact, based on both experimental results (Fink and Ehrlich 1984) 
and theoretical studies (Milchev and Binder 1985), it is accepted that, in certain cases, 
non-pairwise effects are significant. Therefore, we considered it useful to study a 
percolation model with diffusion (henceforth DPM) where the jumping probability of 
a given particle depends on whether or not that particle is a monomer. The DPM can 
be thought of as a Kawasaki dynamics (Kawasaki 1966, Rao er a1 1976) of a system 
with non-additive lateral interactions. 

11 Financially supported by CONICET, Argentina. 

0305-4470/87/061531+ 12$02.50 @ 1987 IOP Publishing Ltd 1531 



1532 H 0 Martin, E V Albano and A L Maltz 

Moreover, the DPM allows us to study the structural properties of clusters under 
thermal equilibrium, which makes a variance with respect to irreversible aggregation 
of small particles to form fractal structures (Herrmann 1986). In fact, clusters in the 
DPM can be dissociated in contrast to the kinetic aggregation of particles which is a 
purely unidirectional process without relation to thermal equilibrium. Only very 
recently, disaggregation of diffusive particles has been taken into account (Botet and 
Jullien 1985, Kolb 1986) and the system is studied at its equilibrium regime. 

The aim of the present work is to compute directly, by using Monte Carlo simula- 
tions, how the diffusion in the steady state regime changes the cluster properties of 
the DPM close to its percolation threshold compared to those of the static SPM. This 
is the first time, to our knowledge, that a diffusion model with short-range non-additive 
attractive interactions has been analysed close to its critical percolation region. 

The results of Monte Carlo simulations on square lattices are presented and 
discussed in § 3. In summary the study has been focused on the critical concentration, 
the correlation length and the percolation probability exponents, the cluster size 
distribution and the fractal dimension of the largest cluster. Furthermore, in § 3.2 we 
propose a simple method for comparing the percolation probability exponents of the 
DPM and SPM when the simulations are carried out using relatively small lattices. 
Finally, the conclusions are stated in § 4. 

2. The model 

The crystalline substratum where the diffusion of particles takes place has been 
represented by a regular bidimensional lattice. Each site of the array can be either 
occupied by only one particle or empty, i.e. the simulated experiments will be performed 
within the first monolayer. 

Let us now discuss the diffusion of atoms on the lattice. Assuming only attractive 
nearest-neighbour ( N N )  site interactions, the ‘hopping probability’ rz, for a given 
particle with z’ N N  occupied sites is given by Ertl and Kuppers (1974) and Bowker 
and King (1978) (for a review see, for example, King 1980) 

rz. = ( Z  - z’) v0 exp[-( ED+ z ’ w ) / k T ]  ( 1 )  

where z is the coordination number of the lattice, ED is the activation energy of 
diffusion and w is the N N  interaction energy. In practice the pre-exponential factor 
vo is assumed to be a constant (the dependence of vo on the entropy and temperature 
is neglected or supposed to be dominated by the exponential term of equation ( 1 )  
(King 1980)). 

Based on equation ( 1 )  we formulate the rules of the DPM. 
(i)  Firstly, each site of the lattice is occupied (or empty) with probability p(1 - p ,  

respectively). This corresponds to the SPM and can be thought of as the condensation 
of incident atoms onto a cooled substratum. 

(ii) After the deposition the motion of the particles starts. At each time step, the 
probability Pv that a given i particle jumps to one given j N N  empty site is 

if i is a monomer. 
if i is not a monomer 

p.. = 
1J { ::!,;-I 

where a monomer is a particle without N N  occupied sites ( z ’=  0), T ( O S  TS 1 )  is an 
external fixed parameter throughout all the procedure and n is the total number of 
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particles on the lattice. Comparing equations ( 1 )  and (2), and after an appropriate 
change of timescale, one has 

(3) T = exp( -&/ kT) 

where & is an effective interaction energy which does not depend on the number of 
N N  occupied sites. That is, the model considers non-additive lateral interactions. 

Let us note that in the special case T =  1,  where the lateral interaction vanishes, 
the particles are distributed randomly as in the SPM (Stauffer et a1 1982). In fact, as 
will be discussed in Q 3, all the results for T = 1 are in agreement with those obtained 
with the SPM. 

In the present work, Monte Carlo simulations have been performed using the DPM 

on L x L square lattices with periodic boundary conditions ( L  251). The initial 
configuration ( I C )  is obtained covering the lattice with probability p as in the SPM. 

Let us denote by an effective movement ( E M )  when one particle actually jumps from 
one site to another. When the movement starts, a relaxation period of 2-4n  EM is 
generally observed, and then an equilibrium configuration ( EC) is obtained. Therefore 
in order to avoid this ‘annealing period’, the properties of the layer (such as the 
distribution of particles in the largest cluster, the cluster size distribution, etc) are 
calculated for the first time after 12n EM. Average values of the properties under 
investigation are evaluated with subsequent EC, each of them obtained after 2n EM. 

The data for each value of p ,  L and T were obtained by averaging over 150-360 EC 

using 3-30 different IC.  

3. Results 

3.1. The critical concentration and the correlation length exponent 

In the DPM the concentration 4 is defined as the average number of particles per lattice 
site. Note that the value of 4 is equal to the probability p in the starting SPM. 

Nevertheless, the meaning of 4 and p is different because, after the diffusion and due 
to the interactions, the probability of a given site to be occupied is no longer independent 
of whether other sites are occupied or empty. 

Let us denote by 4, ( p ,  for the SPM) the critical concentration (probability), i.e. 
for 4 > +,(p > p , )  an infinite cluster appears in the thermodynamic limit; and by +L( p L )  
the L-dependent threshold on a lattice of linear size L. In the SPM and for p close to 
p c ,  the correlation length 5 in the infinite system behaves as 

5 - ( P - P c )  -” (4) 
where v is the correlation length exponent. Thus according to the finite-size scaling 
(Fisher 1971, Herrmann and Stauffer 1984) 

(5) p c  = pL + AL-’ /” .  

If, for the DPM, Y* was the correlation length exponent, then an equivalent expression 
to equation (5) should be valid, i.e. 

(6) 4c = 4L + A* L - ’ ’ ~ * .  

Therefore, evaluating 4‘ for different L, it would be possible to extrapolate the value 
of 4c using equation ( 6 ) .  
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On a L x L square lattice with periodic boundary conditions a percolating cluster 
is a cluster which has either its length or its width (or both) equal to L. Let FL be the 
fraction of percolating clusters evaluated for a large number of EC at a fixed concentra- 
tion. Figure 1 shows Ff( L = 201) for the DPM with T = 0.2 as a function of (b and Ff 
( L  = 201) for the SPM against p. The difference between these two curves suggests that 
in the L = CO limit (bc could not be equal to p c .  

One possibility to define (bL and p L  is by demanding that (see also figure 1)  

Ff((bL) = F f ( p L )  = 0.9. (7) 

Therefore, according to equation ( 5 )  and as is shown in figure 2, a plot of p L  against 
L-’/” ( v  = $ in two dimensions) allows us to obtain p c  = 0.593 f. 0.006. This result agrees 
with the best available values of pc=0.5927*0.0001 for a square lattice (see, for 
example, Gebele 1984, Rapaport 1985, Derrida and Stauffer 1985). The critical con- 
centration evaluated for the DPM with T = 1 is & = 0.593 * 0.005 = p c  as is expected. 
In figure 2 the results of (bc obtained for T = 0.2 and T = 0.05 have also been plotted 
against L-I/”.  The values of & obtained for different T have been listed in figure 2. 
Let us note that great effort has been made in order to obtain very accurate results of 
the critical probability for the SPM in different lattices. Although our results are less 
accurate it is beyond any doubt that (bc continuously changes with T. It should be 
mentioned that the straight lines obtained for the DPM suggest that (see equation (6)) 

y * = y = *  3 .  (8) 
Consequently, it seems that the diffusion does not change the value of the correlation 
length exponent as will be discussed later. 

The main results of this section can be summarised in equation (8) as well as by 
the fact that (bc continuously decreases from (bc=pc=0.593 to (bc=0.565 when T 
decreases from 1 to 0.05, respectively. Although it is very difficult to work with T < 0.05 
due to the large computation time required, we believe that (bc should monotonically 
decrease in the limit T + 0. 

Figure 1. Fraction of percolating clusters F: for the SPM (Ff’ for the DPM) as a function 
of the probability p (concentration 4)  on a square lattice of  linear size L = 201. 0, results 
for the SPM; X , results for the DPM with T = 0.2. The broken lines show the method 
employed in the determination of p L  and 4L according to equation (7).  
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L 
251  101 55 31 

0.61 -1 

Figure 2. Plot of p L  for the SPM (0, pc  = 0.593 *0.006) and c $ ~  for the DPM with different 
values of T against L-3’4 (see equations (5) and (6)). U, T =  1.0 (r$,=0.593*0.005); 
+, T = 0.2 (& = 0.577 *0.006); 0, T = 0.05 (+c = 0.565 *0.010). For T = 1 the ordinate axis 
has been shifted in 0.1, in order to avoid the superposition with the SPM results. The values 
of p6 and +c were obtained by the extrapolation to L + o ~  of the least-squares fit (broken 
lines). The error bars are large enough in order to take both the error in the determination 
of each point as well as the possible corrections to equations (5) and (6) due to finite-size 
effects into account. 

3.2. The percolation probability exponent 

In our Monte Carlo simulations on square lattices of side L, we define PL($L) for the 
SPM (DPM) by 

where 
L + CO, PL + P and f i L  + @, these percolation probabilities behave as 

is the average number of particles in the largest cluster. In the limit 

p - ( P  - P c Y  ( l o a )  

@ - (4 - & I B *  ( l o b )  

for p ( 4 )  slightly above pC(&) (the relation ( l o a )  holds for the SPM and therefore the 
relation ( l o b )  is expected to be valid for the DPM). Since P = 8,  P* can be evaluated 
from the ratio P I P * .  In fact, let us define p’ and 4 by demanding that 

( 1 1 )  PL( p’) = @L( 4) 
then, for large enough L (see equations ( l o ) ) ,  one has 

In figure 3 a plot of In(& - &) against ln(p’-pc) is shown for the case T = 0.2. The 
straight line obtained is in agreement (within an error of 2%) with the equality 

P * = P  (13 )  
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which will be discussed later. Let us stress that, in Monte Carlo simulations, accurate 
values of /3 can only be obtained working with very large L. Nevertheless, a good 
estimation of the ratio P I P *  can be calculated with smaller lattices ( L = 2 0 1 )  as is 
shown in figure 3 .  

3.3. The cluster size distribution 

Let n, and fi, be the average number of clusters per lattice site containing s sites for 
the SPM and the DPM respectively. n, can be calculated exactly for small s, for example 
on a square lattice one has n ,  = p ( l  - p ) * ,  n 2 =  2p2(1 -P)~ ,  n3 = 2 p 3 ( l  -p)'(3 - p ) ,  etc. 
The results of our Monte Carlo simulations agree with these exact cluster numbers 
within 0.1-0.7% of error. In figure 4 ( a )  the ratio f i , (&) /n , (pc)  is plotted as a function 
of s for the case ~ = 0 . 0 5  with +,=OS65 and p,=O.5927. Due to the movement with 
attractive interactions fis( 9,) < n,( p , )  for small s, and as one expects this effect is more 
important for the monomers. As p c >  9,, the number of particles on the lattice is 
different but our conclusion remains valid since the correction factor to include this 
effect is pc/&* 1.05. 

Figure 4 ( b )  shows the ratio 
/ \ -1 

for r = 0.05, where the sums run from s = s1 to s = s2 for different values of s1 and s2. 
For the interval between s1 = 1 and s2 = 100 we have found that Y < 1 due to the effect 
discussed in figure 4 ( a ) .  For the SPM at the percolation threshold one has the power 
law behaviour 

- s-? (15) 
valid for large s, with i = 187/91 =L 2.05 in two dimensions. It should be mentioned 
that the plot of Y (defined by equation ( 1 4 ) )  as a function of s for s > 100 does not 
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1 5 9 40 0.1 0.3 0.5 1.0 5.0 
s s 

Figure 4. The influence of the diffusion on the cluster size distribution. Comparison 
between the results for the SPM at p,=O.5927 and then for DPM at bc ( r = 0 . 0 5 ) =  
0.565 (L=201). ( a )  Plot of the ratio n^,ln,against s for small clusters. ( b )  Plot of Y (see 
equation (14)) against s for various cluster size intervals. Note that the interval width is 
not the same in all cases. n, and iiS are obtained by averaging over 250 samples and 195 
equilibrium configurations (obtained from 13 different initial configurations), respectively. 

show a defined tendency. Then Y could be considered constant within the fluctuations 
of the simulation. Therefore, this result is in agreement with the behaviour 

fi,($,) - s-+* (16) 

.?* = ?. (17) 

for large enough s with 

A more detailed discussion about the exponents will be presented later. 
Figure 5 shows for the DPM (SPM) the average number of clusters per lattice site 

&,( N,)  as a function of 4 (  p )  for different values of r. Taking the definition of fi, and 
n, into account and for a given value of C$ = p ,  one has 

where theA sums run from s = 1 to s = W. It follows from figure 5 that at fixed 4 = p 
one has N ,  # N, for r < 1. Therefore from equations (18) and (19) we conclude that 
the cluster size distribution must change in the DPM (e.g. for small s, fis( C$ = p ) /  n,( p )  
typically behaves as the curve shown in figure 4(a)). Figure 5 also shows that the total 
number of clusters is reduced when the attractive interaction increases ( T decreases). 
The values of Sc obtained along the broken line 4 = 4, do not disagree with figure 
4(b) and equations (16) and (17) which are only valid for large values of s. In fact, 
for p close to p c  (in general for p not near l ) ,  the main contribution to N ,  (see equation 
(19)) is due to clusters of small size (say 10< s), i.e. just within the interval where the 
difference between the SPM and the DPM is more important. In other words the change 
of n, for small s is relevant in the sense that it makes kc be different from N,. Results 
obtained working on smaller lattices with periodic boundary conditions are coincident 
with those shown in figure 5 for L = 201, For example N ,  = 0.0275 at p c  = 0.5927 for 
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0.56 0.59 
P *  + 

Figure 5. The total number of clusters per lattice site ( L  = 201) N,( iG) against the probability 
p (concentration 4 )  for the SPM (0) and for the DPM with different values of T. +, T =  1; 
A, T = 0.5; m, 7 = 0.2; 0, T = 0.05. For 7 = 1 the ordinate axis has been shifted in 0.01. 
The crosses indicate the position of 4c in the concentration axis and the broken line has 
been drawn to guide the eyes. 

L = 101, 151 and 201 y d  for T = 0.05 we have obtained fiC = 0.0123 ( L  = 101), = 
0.0122 ( L  = 151) and N ,  = 0.0121 ( L  = 201) at 4, = 0.565. Therefore, one should expect 
that all the results presented in figure 5 would be valid in the thermodynamic limit. 

Figure 6 shows the ratio 

A ” ( + ) / S m a x ( p )  (20) 

0 0.5 1.0 
T 

Figure 6. Relative variation of the means cluster size M, (0) and M, (a), defined by 
equations (20) and (21) respectively, plotted against T. L = 201 and 4 = p = 0.565 which 
corresponds to the critical concentration for 7 = 0.05. 



Percolation with difision 1539 

as a function of T for p = 6 = 0.565. One can see from figure 6 how the mass of the 
largest cluster increases due to the attractive interactions in agreement with the shift 
of the critical percolation threshold previously discussed. Since 4 = 0.565 is our 
estimated value of 4, for ~ = 0 . 0 5 ,  an infinite cluster is expected to appear in the 
thermodynamic limit for 0 s T s 0.05, and therefore MI should be infinite in this region. 
The value M ,  2 5 obtained for T = 0.05 is due to the finite-size effect. 

From figures 4 and 6 we conclude that the mass of the large cluster increases while 
the number of small clusters decreases. imax increases due to the attachment of 
individual particles in the boundary of the largest cluster, and also as a consequence 
of this effect clusters separated by narrow gaps can be joined together. These effects 
become more important when T decreases, and this behaviour should also be true in 
the limit T + 0. Nevertheless, the case T = 0 is worth a further discussion. In fact, at 
T = O  only the monomers can diffuse and stick around the boundary of clusters. 
Consequently, a ‘static’ configuration results when monomers are exhausted and the 
diffusion finishes. On the other hand, we have found that the mass of the largest 
cluster does not increase as much as for T = 0.05, and preliminary results indicate that 
0.58 d 4,s 0.59 which is greater than +c = 0.565 for T = 0.05. Therefore the special 
case 7 = 0 differs from the limit T + 0. 

Figure 6 also shows the ratio 

where f i c L ( N c L )  is the total number of clusters on the lattice for the DPM (SPM) 
(remember that n is the total mass on the lattice (n = 4L2 = pL2) ) .  That is, the numerator 
(the denominator) is the average mass per cluster for the DPM (for the SPM respectively) 
evaluated after the exclusion of the largest cluster. Figure 6 shows that the size of the 
remaining clusters becomes only slightly enlarged even for the lowest value of T. This 
behaviour shows two competitive effects because on one side gmax increases but on 
the other the total number of clusters ( NcL = NcL2) decreases (see also figure 5). 

Summing up, figures 4-6 show different aspects concerning the modification of the 
cluster size distribution in the DPM compared with the starting SPM. 

3.4. The fractal dimension and the relationship between the exponents 

The fractal dimension D of an infinite cluster in d dimensions can be defined by 

M(1)-ZD (22) 

where M is the number of particles of the cluster within a volume I d ,  of linear size 1, 
centred in one point belonging to that cluster. In our two-dimensional simulation we 
have used squares of side 1 centred in the geometrical centre of the largest cluster. 
Figure 7 shows the In-ln plot of as a function of 1 for both the SPM and the DPM 
with 7’0.1, 0.5 and 1.0. In all cases the results presented in figure 7 have been 
evaluated for concentrations 4 (probability p )  slightly below the critical value &( p c ) .  
From the slopes of various plots as those shown in figure 7 (for other values of 4, T 

and L )  and using equation (22) we have obtained 

D = 1.90 * 0.02 (23) 
for 0.1 s T G  1 as well as for the SPM. 
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1 

Figure 7. In-In plot of MI-' against I (see equation (22)). with L = 201, for both the SPM, ., p = 0.583 averaged over 400 samples; and the DPM for different values of T. 0, T = 1,4 = 
0.583 (270 EC, 6 IC); 0, T = 0 . 5 , 4  = 0.573 (225 EC, 5 IC); A, T =0.1, 4 = 0.560 (360 Ec, 
3 6 1 ~ ) .  ~ , E C  and n21c mean that the value of each point is obtained by averaging n, 
equilibrium configurations using n2 different initial configurations. For the sake of clarity 
the results have been shifted on the ordinate axis. The straight full line corresponds to 
D = 1.90. 

Let us discuss the relationship between the exponents. Using equations (9) and 
( loa)  for the SPM and p close to p ,  it follows that 

M(I, p )  - ( P  - p c ) P l d .  (24) 

Remembering equation (4) and using the scaling argument for the largest cluster near 
the critical point, equation (24) also holds replacing 6 by 1. Thus from equations (22) 
and (24) the well known scaling law 

D = d  -@/U (25) 
can be obtained (equation (25) is valid for d c d,, where d, = 6 is the upper critical 
dimension). Then, replacing the exact values for two dimensions v =$ and p =& in 
equation (25) it follows 

(26) 
Therefore, our result (equation (23)) agrees within the error bars with the expected 
value of the fractal dimension given by equation (26) (for other Monte Carlo simulations 
see, for example, Stauffer 1979, 1980, Kapitulnik et a1 1983). 

D=91- 48 - 1.896. 

Using the above arguments, one obviously obtains 

(27) D = d - p* /  V* 

for the DPM. Comparing equations (23), (25) and (27) it follows that 

p * /  U* = p /  v (28) 
which are valid within our statistical error. Let us stress that our previous results v* = v 
and @ * = p  (equations (8) and (13) )  are in full agreement with the independently 
obtained equation (28). As in the SPM the standard exponents such as a, p, 7 , .  . . , are 
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related between them (there are only two free exponents), our results (see also equation 
(17)) strongly suggest that all these exponents take the same values in both models 
(SPM and DPM) in two dimensions. Other exponents recently introduced and related 
to the internal structure of the infinite cluster at the critical point as, for example, 
the fractal dimension of the backbone (Herrmann and Stanley 1984), the spectral 
dimension and the spreading dimension (see, for example, Vannimenus 1984) have 
not been evaluated for the DPM. Nevertheless, due to some similarities between the 
SPM and the DPM as well as for the results previously discussed we would expect that 
the values of these exponents should be the same for both models. 

4. Summary and discussion 

A new model of percolation (the SPM defined in § 2), which includes the movement 
of the particles, is proposed and studied close to the critical concentration. Based on 
the results discussed in previous sections we state the following conclusions. (i) The 
critical concentration depends on the interaction between the particles on the lattice. 
In fact, q5c continuously increases from & = 0.565 for T = 0.05 up to = p c  = 0.593 for 
T = 1. (ii) The diffusion of particles with attractive interactions simultaneously causes 
both a strong reduction in the number of small clusters and the growth of large islands. 
Therefore the cluster size distribution depends on T. As a consequence of this behaviour 
the number of clusters per site also changes with T. (iii) The exponents Y*, p* and ?* 
and the fractal dimension D do not change with T (0.1 < 7s 1) suggesting that the 
SPM and the proposed DPM belong to the same universality class (see also the last 
paragraph of 0 3.4). (iv) The DPM is reversible only for T = 1 where this dynamic model 
has the same mean values as the SPM for all the analysed magnitudes. In the limit 
T + O  the DPM is not equivalent to the case T = O .  

Let us note that for the king model it is known that the percolation exponents 
only change at the thermal critical point (Stauffer et a1 1982). Our results about 
universality suggest that, within all the analysed range of T, the unknown thermal 
critical point of the DPM has not been reached. 

Let us finally discuss some other models related to the percolation theory. The 
invasion percolation model (with two versions: A without and B with the trapping 
rule) has been proposed by Wilkinson and Willensen (1983a, b) as a model of fluid 
displacement in porous media at very low velocity. This model has been extensively 
studied and, except for the version B in two dimensions, it belongs to the same 
universality class and has the same values for the percolation threshold as those of 
the SPM (Wilkinson and Barsony 1984, MBrtin et a1 1984). Nevertheless, the main 
difference with the SPM arises by the fact that invasion percolation is a dynamic model. 
In other frameworks, the growth models, such as diffusion-limited aggregation (Witten 
and Sander 1981) and clustering of clusters (Meakin 1983, Kolb et a1 1983), have been 
introduced for the study of the aggregation and the gelation phenomena (for a review 
see Herrmann 1986). These models have recently been analysed with great interest 
since the kinetic effects are relevant in the sense that they change the value of the 
exponents. Nevertheless, these aggregation models are essentially different from the 
DPM. For example, in the DPM the clusters can be dissociated due to the diffusion of 
its constituent particles and our study has been performed in the dynamic equilibrium 
regime, in contrast with the irreversible growth modes where the mass of the largest 
cluster always increases. On the other hand, reversible aggregation models have recently 



1542 H 0 Ma'rtin, E VAlbano and A L Maltz 

been analysed in the steady state equilibrium (Botet and Jullien 1985, Kolb 1986) and 
the calculated value of the fractal dimension is the same, within the error bars, as that 
of the static lattice animals but this is not at all a trivial result. 
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